数学

数学

【解析】双曲線関数を定義する

双曲線関数はネイピア数\(e\)を用いて\begin{align}\sinh x= \frac{e^{x}-e^{-x}}{2}\\\cosh x= \frac{e^{x}+e^{-x}}{2}\end{align}\(\tanh x\)に...
python

【解析】Pythonで三角関数3種のグラフを描く

Pythonで三角関数\begin{align}y&= \sin x\\y&= \cos x\\y&= \tan x\\\end{align}を描く。結果以下ソースコードimport numpy as npimport matplotlib...
python

【解析】Pythonで双曲線関数を描く

Pythonで双曲線関数\begin{align}y&= \sinh x\\y&= \cosh x\\y&= \tanh x\\\end{align}を描く。結果以下ソースコードimport numpy as npimport matplo...
MATLAB/simulink

【解数】Pythonで指数と対数のグラフを描く

指数と対数のグラフを描く。以下ソースコードimport numpy as npimport matplotlib.pyplot as pltx = np.arange(-10.0, 10.0, 0.02)plt.plot(x, x**3)p...
python

【解析】Pythonで三次関数のグラフを描く

pythonで二次関数のグラフを描く。三次関数は\begin{align}f(x)=ax^3+bx^2+cx+d(a≠0)\end{align}のような関数でこれをただ計算すればいい。例えば\begin{align}y=x^3+2x^2+4...
代数

【代数】単位行列の定義

次のような行列を単位行列といい、\(E\)または\(I\)で表す。\begin{align}E=\begin{pmatrix}1 & 0 & 0 & \cdots & 0\\0 & 1 & 0 & \cdots & 0\\\vdots & ...
代数

【代数】二項定理とは

次のような展開\begin{align}(x+y)^{1}&=x+y\\(x+y)^{2}&=x^2+2xy+y^2\\(x+y)^{3}&=x^3+3x^2y+3xy^2+y^3\end{align}を考えると、一般には次のような規則があ...
数学

【解析】複素数の定義

二次方程式の解の公式\begin{align}x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}\end{align}の判別式\begin{align}D=b^2-4ac\end{align}が負になるとき実数の範囲では解...
数学

【解析】複素数の四則演算

複素数\(z_1=a+bi,z_2=c+di,\)の四則演算は次のように計算する。和\begin{align}z_1+z_2=a+c+(b+d)i\end{align}差\begin{align}z_1-z_2=a-c+(b-d)i\end...
数学

【解析】任意の頂点を通る二次関数の共有点の座標

二次関数\begin{align}y=ax^2+bx+c \hspace{5mm} (a \neq 0)\end{align}の解は\begin{align}x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}\end{al...
python

【解析】指定した頂点を通る二次関数を描画する

二次関数\begin{align}y=ax^2+bx+c \hspace{5mm} (a \neq 0)\end{align}は\(a\)と頂点\((p,q)\)を定めたとき、\(b,c\)を\begin{align}b&=-2ap \\c...
数学

【解析】二次関数の頂点の座標

二次関数\begin{align}y=ax^2+bx+c \hspace{5mm} (a \neq 0)\end{align}の頂点の座標について考える。頂点の座標が\((p,q)\)のとき、これを満たす式は\begin{align}y=a...
数学

【解析】留数と留数定理

特異点\(a\)が\(n\)位の極であるときの留数は\begin{align}\mathrm{Res}(a,f)=\lim_{z \to a} \frac{d^{n-1}}{dz^{n-1}} \left \{ (z-a)^n f(z) \...
数学

【解析】複素数の大小関係とノルム

複素数の大小関係について考える。まず実数の大小関係について\begin{align}2<3\end{align}は実数の範囲であらゆる数を乗じても、または加算しても大小関係は成り立つ。複素数において\begin{align}2i<3i\en...
代数

【代数】二次方程式の解と係数の関係性

二次方程式\begin{align}ax^2+bx+c=0\end{align}の解は\begin{align}x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}\end{align}となる。2つの解をそれぞれ\(\alp...
数学

【解析】二次関数の共有点の数

二次関数\begin{align}y=ax^2+bx+c \hspace{5mm} (a \neq 0)\end{align}のグラフはのような形になる。二次関数のグラフとx軸との交点を共有点といい、上図の例ではx軸との共有点の数は2つとな...
数学

【数学】そのうち数学検定を受けてみる

そのうち数検を受けてみる。数検とはが実施している資格で、人気らしい。数検のレベル 1級:大学程度・一般準1級:高校3年 2級:高校2年準2級:高校1年1級であれば大学生くらいだと取れるらしい。高校生は準1級を目指してもいいかも。主な出題内容...
数学

【解析】関数の極限とε-δ論法

実数上の開区間\(I\)上で定義されている関数\(f(x)\)がある。この関数が\(x=a\)において極限\(\alpha\)を持つとは、\(\forall \varepsilon>0,\forall \delta>0\)について\begi...
代数

【代数】二重根号の外し方

次のような\begin{align}\sqrt{a \pm b\sqrt{c}}\end{align}根号の中に根号があるような式を二重根号という。二重根号は\(A>B\)のとき\begin{align}\sqrt{a+b\sqrt{c}}...
数学

【解析】導関数と微分

今\(y=3x^2\)について\(x\)に近い点\(x+h\)を考えると\begin{align}y=3 \times (x+h)^2=3x^2+6xh+4h^2\end{align}これより傾きは\begin{align}\frac{3x...