制御工学

ディジタル制御

MATLABで離散化された伝達関数のH∞ノルムを求める

MATLABで離散化された伝達関数のH∞ノルムを求める。H∞ノルムは以前求めたベクトル軌跡のノルムの最大値 \begin{align}P(e^{i \theta})= \sup_{\theta \in } \left | \...
ディジタル制御

MATLABで離散化された伝達関数のナイキスト線図を描く

離散化された伝達関数のナイキスト線図を描く。離散化された伝達関数を \begin{align}P(z^{-1})=\frac{1}{1+2z^{-1}+3z^{-2}}\end{align} とするとベクトル軌跡は\(...
ディジタル制御

PID制御器を後退差分で離散化する

PID制御器を後退差分で離散化する。後退差分は \begin{align}s=\frac{1-z^{-1}}{T}\end{align} で表されるのでPID制御器に適応すると操作量は \begin{align}...
python

Pythonで伝達関数を部分分数分解する

制御工学ではよく伝達関数の性質を調べるために部分分数分解をすることがある。部分分数分解とは分数の分母を因数分解し、それらをいくつかの分数の和に分解することを指す。例えば \begin{align}\frac{1}{(x+p_...
MATLAB/simulink

MATLABで双一次変換を使った離散PID制御と連続PID制御の応答を確認する

双一次変換を使った離散PID制御と連続PID制御の応答を確認する。双一次変換は連続時間の伝達関数に対して\(s\)を \begin{align}s=\frac{2(z-1)}{T(z+1)}\end{align} に置...
ディジタル制御

双一次変換を使ってPID制御器の伝達関数を離散化する

PID制御器の伝達関数 \begin{align}C(s)=K_P + \frac{K_ I}{s} + K_D s\end{align} を双一次変換で離散化する。\(s\)に \begin{align}s...
MATLAB/simulink

MatlabでPID制御のシミュレーションをする

MatlabでPID制御のシミュレーションをする。システムとPID制御器の伝達関数は \begin{align}P&=\frac{1}{s+1} \\C&=K_P + \frac{K_I}{s} + K_D ...
ロバスト制御

【制御】SISOシステムのH∞ノルム

安定でプロパなSISOシステムの\(H_∞\)ノルムは \begin{align}\|G(s) \|_\infty =\sup_{\omega} \{ G(j \omega) \}\end{align} で与えられる。...
python

【制御】Pythonで単位ステップ関数を描く

Pythonで単位ステップ関数を描画する。単位ステップ関数は \begin{align}H(x)=\begin{cases}1 \hspace{10mm} (x \geq 0)\\0 \hspace{10mm} (x &lt...
制御工学

【制御】一般化プラントの定義

ある物理システムをそのまま状態方程式にしたもの、あるいはその拡大系が次のように表されているとする。 \begin{align}\dot{x}(t) &= Ax(t)+Bu(t)\\y(t) &= Cx(t)+...
制御工学

【制御】ドイルの記法を使った伝達関数表現

ドイルの記法を用いれば状態方程式 \begin{align}\dot{x}(t)&=Ax+Bu\\y(t)&=Cx+Du\end{align} の伝達関数を \begin{align}G(s)=C...
制御工学

【制御】無限大ノルムの性質2

伝達関数\(G(s)\)について、\(H_{\infty}\)ノルムは \begin{align}\parallel G(s) \parallel_{\infty} = \sup_\omega \left | G(s) \r...
制御工学

【制御】無限大ノルムの性質1

無限大ノルム \begin{align}\parallel G(s) \parallel_{\infty} = \sup_\omega \left | G(s) \right |\end{align} は伝達関数\(G...
python

【制御】互いに逆数の関係にあるシステムのボード線図と性質

2つのシステムが \begin{align}G_1=\frac{1}{s^2+s+1} \hspace{10mm} G_2= \frac{1}{G_1}\end{align} のような逆数の関係にある時、それぞれのボー...
python

【制御】直列に接続されたシステムのボード線図と性質

2つのシステム \begin{align}G_1=\frac{1}{s} \hspace{10mm} G_2=\frac{1}{s^2+s+1}\end{align} が直列に接続されているとき、全体のボード線図はそれ...
タイトルとURLをコピーしました