適応制御

制御工学

Lyapunov方程式を証明する

システムの安定性を調べるにはLyapunov方程式\begin{align}PA+A^{T}P=-Q\end{align}を調べればいい。\(P\)は\(A\)の固有値の実部が負であれば\begin{align}P=\int_0^\inft...
制御工学

【制御】システムが厳密にプロパな場合のカルマン=ヤクボビッチの補題(必要十分)

可制御可観測なSISOシステム\begin{align}\dot{x}(t)=Ax(t)+Bu(t)\\y(t)=Cx(t)+Du(t)\end{align}の伝達関数は\begin{align}G(s)=C(sI-A)^{-1}B+D\e...
制御工学

【制御】概強正実性についての定理

システム\(G\)について最小位相系相対次数が\(0\)もしくは\(1\)最高位係数が正このときシステム\(G\)はASPRとなる。
制御工学

【制御】システムの概強正実性

任意の伝達関数\(G(s)\)\begin{align}G(s)=\dfrac{K_{p} (s -\sigma_{1})(s - \sigma_{2}) \cdots (s - \sigma_{m})} {(s - \lambda_{1}...
MATLAB/simulink

MATLAB/simulinkを使って簡単な適応制御を試す

一次遅れ系を例にMIT方式に基づくモデル規範型適応制御を試してみる。今、制御対象を\begin{align}y(s)=\frac{b}{s+a}\end{align}で表す。これは微分方程式で書き直せば、\begin{align}\dot{...
制御工学

正実性と強正実性

任意の伝達関数\(G(s)\)\begin{align}G(s)=\dfrac{K_{p} (s -\sigma_{1})(s - \sigma_{2}) \cdots (s - \sigma_{m})} {(s - \lambda_{1}...