コンデンサの定義式
\begin{align}
v_c=\frac{1}{C} \int i dt
\end{align}
より
\begin{align}
E & =v_{c1}+v_{c2} \cdots+v_{cn} =\frac{1}{C_{1}} \int i dt + \frac{1}{C_{2}} \int i dt+\cdots +\frac{1}{C_{n}} \int i dt \\
&= \left ( \frac{1}{C_{1}} + \frac{1}{C_{2}}+ \cdots +\frac{1}{C_{n}}\right ) \int i dt \\
\end{align}
\(Q= \displaystyle \int i dt\)より
\begin{align}
Q= \frac{1}{\dfrac{1}{C_{1}} + \dfrac{1}{C_{2}}+ \cdots +\dfrac{1}{C_{n}}} E
\end{align}
特に2つの場合は
\begin{align}
Q & = \frac{C_{1} C_{2}}{C_{1} + C_{2}} E \\
\end{align}
コメント