Processing math: 100%

オイラーの公式を使ってcos(90°-θ)=sinθの導出する

オイラーの公式を使って\cos(90^\circ – \theta)= \sin \theta を導出する。

\begin{align} e^{i(90^\circ-\theta)}&=e^{i 90^\circ} e^{-i \theta} \\ &=(\cos 90^\circ + i\sin 90^\circ)(\cos i\theta – i\sin \theta)\\ &=(\cos 90^\circ + i\sin 90^\circ)(\cos \theta – i\sin \theta)\\ &= \cos 90^\circ \cos \theta – i \cos 90^\circ \sin \theta + i\sin 90^\circ \cos \theta + \sin 90^\circ \sin \theta \end{align}

実部を考えれば

\begin{align} \cos 90^\circ \cos \theta + \sin 90^\circ \sin \theta &= \sin 90^\circ \sin \theta \\ &= \sin \theta \end{align}

よって

\begin{align} \cos(90^\circ – \theta )=\sin \theta \end{align}

コメント

タイトルとURLをコピーしました