連続するフィボナッチ数列の\(10\)個の和は\(7\)番目の数を\(11\)倍した数と一致する。
\begin{align}
\sum_{i=1}^{10} F_{n+i} = 11 \times F_{n+7}
\end{align}
以下のコードで確かめられる。
#include <stdio.h>
#include <math.h>
#define N 9
const double phi = (1 + sqrt(5)) / 2;
double Fibonacci(int);
int main() {
int i;
double psi = 0;
for (i = 1; i <= 10; i++) {
psi = psi + Fibonacci(N + i);
}
printf("%f -> %f \r\n", 11*Fibonacci(N+7), psi);
}
double Fibonacci(int i) {
return (pow(phi, i) - pow(-phi, -i)) / sqrt(5);
}
コメント